
物理知识点:
1.匀速直线运动的速度一定不变,速度一定是一个定值,与路程不成正比,时间不成反比。
2.平均速度不是速度的平均值,只能是总路程除以这段路程上花费的所有时间,包含中间停的时间。
3.密度不是一定不变的。密度是物质的属性,和质量体积无关,但和温度有关,尤其是气体密度跟随温度的变化比较明显。
4.天平读数时,游码要看左侧,移动游码相当于在天平右盘中加减砝码。
5.受力分析的步骤:确定研究对象;找重力;找接触物体;判断和接触物体之间是否有压力、支持力、摩擦力、拉力,阻力,电磁吸引力等其它力。
6.平衡力和相互作用力的区别:平衡力作用在一个物体上,相互作用力作用在两个物体上。
7.物体运动状态改变一定受到了力,受力运动状态不一定改变。力是改变物体运动状态的原因。受力也包含受包含受平衡力,此时运动状态就不变。
8.惯性大小和速度无关。惯性大小只跟质量有关。速度越大只能说明物体动能大,能够做的功越多。
9.惯性是属性不是力,惯性是物体的固有属性。不能说受到惯性,只能说具有惯性。
10.物体受平衡力作用,物体处于平衡状态(静止或匀速直线运动)。物体受非平衡力:运动状态一定改变。
11.电动机原理:通电线圈在磁场中受力转动,把电能转化成机械能。外电路有电源。发电机原理:电磁感应,把机械能转化成电能,外电路无电源。
12.月球上弹簧测力计、天平都可以使用,太空失重状态下天平不能使用而弹簧测力计还可以测拉力等除重力以外的其它力。
13.滑动摩擦力跟压力有关,但静摩擦力只跟和它平衡的力有关,拉力多大摩擦力多大。
14.两个物体接触不一定发生力的作用。还要看有没有挤压,相对运动等条件。
15.摩擦力和接触面的粗糙程度有关,压强和接触面积的大小有关。
一、测量
⒈长度l:主单位:米;测量工具:刻度尺;测量时要估读到最小刻度的下一位;
⒉时间t:主单位:秒;1时=3600秒,1秒=1000毫秒。
⒊质量m:物体中所含物质的多少叫质量。主单位:千克;
二、机械运动
⒈机械运动:物体位置发生变化的运动。
参照物:判断一个物体运动必须选取另一个物体作标准,这个被选作标准的物体叫参照物。
⒉匀速直线运动:
公式:s=vt 单位:1米/秒=3.6千米/时。
三、力
⒈力f:力是物体对物体的作用。物体间力的作用总是相互的。
力的单位:牛顿(n)。测量力的仪器:弹簧测力计。
力的作用效果:使物体发生形变或使物体的运动状态发生改变。
⒉力的三要素:力的大小、方向、作用点。
⒊重力g:由于地球吸引而使物体受到的力。方向:竖直向下。
重力和质量关系:g=mg m=g/g
g=9.8牛/千克。读法:9.8牛每千克,表示质量为1千克物体所受重力为9.8牛。
重心:重力的作用点叫做物体的重心。规则物体的重心在物体的几何中心。
⒋二力平衡条件:作用在同一物体;两力大小相等,方向相反;作用在一直线上。
物体在二力平衡下,可以静止,也可以作匀速直线运动。
⒌同一直线二力合成:方向相同:合力f=f1+f2 ;合力方向与f1、f2方向相同;
方向相反:合力f=f1-f2,合力方向与大的力方向相同。
⒍相同条件下,滚动摩擦力比滑动摩擦力小得多。
滑动摩擦力与压力,接触面材料性质和粗糙程度有关。
7.牛顿第一定律也称为惯性定律其内容是:一切物体在不受外力作用时,总保持静止或匀速直线运动状态。惯性:物体具有保持原来的静止或匀速直线运动状态的性质叫做惯性。
四、密度
⒈密度ρ:某种物质单位体积的质量
公式: m=ρv 国际单位:千克/米3 ,常用单位:克/厘米3,
关系:1克/厘米3=1×10^3千克/米3;
⒉密度测定:用托盘天平测质量,量筒测固体或液体的体积。
五、压强
⒈压强p:物体单位面积上受到的压力叫做压强。
压力f:垂直作用在物体表面上的力,单位:牛(n)。
压力产生的效果用压强大小表示,跟压力大小、受力面积大小有关。
压强单位:牛/米2;专门名称:帕斯卡(pa)
公式: f=ps s:受力面积,两物体接触的公共部分;单位:米2。
改变压强大小方法:①减小压力或增大受力面积,可以减小压强; ②增大压力或减小受力面积,可以增大压强。
⒉液体内部压强:
产生原因:由于液体有重力,对容器底产生压强; 特点:由于液体流动性,液体对器壁有压强、液体内部向各个方向都有压强
规律:①同一深度处,各个方向上压强大小相等②深度越大,压强也越大③不同液体同一深度处,液体密度大的,压强也大。[深度h,液面到液体某点的竖直高度。
公式:p=ρgh h:单位:米; ρ:千克/米3; g=9.8牛/千克。
⒊大气压强:大气受到重力作用产生压强,证明大气压存在且很大的是马德堡半球实验,测定大气压强数值的是托里拆利(意大利科学家)。托里拆利管倾斜后,水银柱高度不变,长度变长。
1个标准大气压=76厘米水银柱高=1.01×10^5帕=10.336米水柱高
大气压强随高度变化规律:海拔越高,气压越小,即随高度增加而减小,沸点也降低。
六、浮力
1.浮力及产生原因:浸在液体(或气体)中的物体受到液体(或气体)对它向上托的力叫浮力。方向:竖直向上;原因:液体对物体的上、下压力差。
2.阿基米德原理:浸在液体里的物体受到向上的浮力,浮力大小等于物体排开液体所受重力。
即f浮=g液排=ρ液gv排。 (v排表示物体排开液体的体积)
3.浮力计算公式:f浮=g-t=ρ液gv排=f上、下压力差
4.当物体漂浮时:f浮=g物 且 ρ物<ρ液 当物体悬浮时:f浮=g物 且 ρ物=ρ液
当物体上浮时:f浮>g物 且 ρ物<ρ液 当物体下沉时:f浮ρ液
七、简单机械和功
⒈杠杆平衡条件:f1*l1=f2*l2。力臂:从支点到力的作用线的`垂直距离
2.定滑轮:相当于等臂杠杆,不能省力,但能改变用力的方向。
3.动滑轮:相当于动力臂是阻力臂2倍的杠杆,能省一半力,但不能改变用力方向。
4.功:两个必要因素:①作用在物体上的力;②物体在力方向上通过距离。w=fs 功的单位:焦耳
5.功率:物体在单位时间里所做的功。表示物体做功的快慢的物理量,即功率大的物体做功快。
p=w/t p的单位:瓦特; w的单位:焦耳; t的单位:秒。
八、光
⒈光的直线传播:光在同一种均匀介质中是沿直线传播的。小孔成像、影子、光斑是光的直线传播现象。
光在真空中的速度最大为3×108米/秒=3×105千米/秒
⒉光的反射定律:一面二侧三等大。(入射光线和法线间的夹角是入射角。反射光线和法线间夹角是反射角。入射光线和反射光线在同一平面内;入射光线和反射光线分居于法线两侧;入射角等于反射角)
平面镜成像特点:虚像,等大,等距离,与镜面对称。物体在水中倒影是虚像属光的反射现象。
⒊光的折射现象和规律: 看到水中筷子、鱼的虚像是光的折射现象。
光的折射规律:一面二侧三随大四空大(入射光线和折射光线在同一平面内;入射光线和折射光线分居于法线两侧;当入射角增大时,折射角随之增大;当入射角和折射角一个在空气中,另一个在其他介质中时,位于空气中的那个角较大)凸透镜对光有会聚光线作用(所以凸透镜又叫会聚透镜),凹透镜对光有发散光线作用(所以凹透镜又叫发散透镜)。
⒋凸透镜成像规律
物距u 像距v 像的性质 应用
u
u=f 不成像 获得平行光源
f2f 倒立放大实像 幻灯机
u=2f v=2f 倒立等大实像
u>2f f
⒌凸透镜成像实验:将蜡烛、凸透镜、光屏依次放在光具座上,使烛焰中心、凸透镜中心、光屏中心在同一个高度上。
九、热学:
⒈温度t:表示物体的冷热程度。是一个状态量。
常用温度计原理:根据液体热胀冷缩性质。
温度计与体温计的不同点:①量程,②最小刻度,③玻璃泡、弯曲细管,④使用方法。
⒉热传递条件:有温度差。热量:在热传递过程中,物体吸收或放出热的多少.
热传递的方式:传导(热沿着物体传递)、对流(靠液体或气体的流动实现热传递)和辐射(高温物体直接向外发射出热)三种。
⒊汽化:物质从液态变成气态的现象。方式:蒸发和沸腾,汽化要吸热。
影响蒸发快慢因素:①液体温度,②液体表面积,③液体表面空气流动。蒸发有致冷作用。
⒋比热容c:单位质量的某种物质,温度升高1℃时吸收的热量,叫做这种物质的比热容。
比热容是物质的特性之一,单位:焦/(千克℃) 常见物质中水的比热容最大。
c水=4.2×103焦/(千克℃) 读法:4.2×103焦耳每千克摄氏度。
物理含义:表示质量为1千克水温度升高1℃吸收热量为4.2×103焦。
⒌热量计算:q放=cm⊿t降 q吸=cm⊿t升
q与c、m、⊿t成正比,c、m、⊿t之间成反比。⊿t=q/cm
6.内能:物体内所有分子的动能和分子势能的总和。一切物体都有内能。内能单位:焦耳
物体的内能与物体的温度有关。物体温度升高,内能增大;温度降低内能减小。
改变物体内能的方法:做功和热传递(对改变物体内能是等效的)
7.能的转化和守恒定律:能量即不会凭空产生,也不会凭空消失,它只会从一种形式转化为其它形式,或者从一个物体转移到另一个物体,而能的总量保持不变。
十、电路
⒈电路由电源、电键、用电器、导线等元件组成。要使电路中有持续电流,电路中必须有电源,且电路应闭合的。电路有通路、断路(开路)、电源和用电器短路等现象。
⒉容易导电的物质叫导体。如金属、酸、碱、盐的水溶液。不容易导电的物质叫绝缘体。如木头、玻璃等。 绝缘体在一定条件下可以转化为导体。
⒊串、并联电路的识别:串联:电流不分叉,并联:电流有分叉。
十一、电流定律
⒈电量q:电荷的多少叫电量,单位:库仑。
电流i:1秒钟内通过导体横截面的电量叫做电流强度。 q=it
电流单位:安培(a) 1安培=1000毫安 正电荷定向移动的方向规定
为电流方向。
测量电流用电流表,串联在电路中,并考虑量程适合。不允许把电流表直接接在电源两端。
⒉电压u:使电路中的自由电荷作定向移动形成电流的原因。电压单位:伏特(v)。
测量电压用电压表(伏特表),并联在电路(用电器、电源)两端,并考虑量程适合。
⒊电阻r:导电物体对电流的阻碍作用。符号:r,单位:欧姆、千欧、兆欧。
电阻大小跟导线长度成正比,横截面积成反比,还与材料有关。
导体串联在电路中时,电流相同(1∶1)。 导体并联在电路中时,电压相同(1:1)
⒋欧姆定律:公式:i=u/r u=ir r=u/i
导体中的电流强度跟导体两端电压成正比,跟导体的电阻成反比。
导体电阻r=u/i。对一确定的导体若电压变化、电流也发生变化,但电阻值不变。
⒌串联电路特点:
① i=i1=i2 ② u=u1+u2 ③ r=r1+r2 ④ u1/r1=u2/r2
电阻不同的两导体串联后,电阻较大的两端电压较大,两端电压较小的导体电阻较小。
⒍并联电路特点:
①u=u1=u2 ②i=i1+i2 ③1/r=1/r1+1/r2 或 ④i1r1=i2r2
电阻不同的两导体并联:电阻较大的通过的电流较小,通过电流较大的导体电阻小。
十二、电能
⒈电功w:电流所做的功叫电功。电流作功过程就是电能转化为其它形式的能。
公式:w=uq w=uit=u2t/r=i2rt w=pt 单位:w焦 u伏特 i安培 t秒 q库 p瓦特
⒉电功率p:电流在单位时间内所作的电功,表示电流作功的快慢。电功率大的用电器电流作功快。
公式:p=w/t p=ui (p=u2/r p=i2r) 单位:w焦 u伏特 i安培 t秒 q库 p瓦特
⒊电能表:测量用电器消耗电能的仪表。1度电=1千瓦时=1000瓦×3600秒=3.6×10^6焦耳
例:1度电可使二只“220v、40w”电灯工作几小时?
解: t=w/p=1千瓦时/(2×40瓦)=1000瓦时/80瓦=12.5小时
十三、磁
1.磁体、磁极同名磁极互相排斥,异名磁极互相吸引
物体能够吸引铁、钴、镍等物质的性质叫磁性。具有磁性的物质叫磁体。磁体的磁极总是成对出现的。
2.磁场:磁体周围空间存在着一个对其它磁体发生作用的区域。
磁场的基本性质是对放入其中的磁体产生磁力的作用。
磁场方向:小磁针静止时n极所指的方向就是该点的磁场方向。磁体周围磁场用磁感线来表示。
地磁北极在地理南极附近,地磁南极在地理北极附近。
3.电流的磁场:奥斯特实验表明电流周围存在磁场。
通电螺线管对外相当于一个条形磁铁。
通电螺线管中电流的方向与螺线管两端极性的关系可以用右手螺旋定则来判定。
直线运动高中物理知识点1
知识点概述
1.知识与技能:
1掌握用v—t图象描述位移的方法.
2掌握匀变速运动位移与时间的关系并运用(知道其推导方法).
2.过程与方法:
1通过对v—t图象位移的求法,明确“面积”与位移的关系。
2通过图像问题,学会用已有知识分析问题的方法和验证匀加速运动的平均速度求法。
3练习位移与时间公式的应用
知识点总结
位移--时间图象(s-t图)
(1)描述:表示位移和时间的关系的图象,叫位移-时间图象,简称位移图象。
(2)物理意义:描述物体运动的位移随时间的变化规律。
(3)坐标轴的含义:横坐标表示时间,纵坐标表示位移。由图象可知任意一段时间内的位移和发生某段位移所用的时间。
匀速直线运动的s-t图
(1)匀速直线运动的s-t图象是一条倾斜的直线,或某直线运动的s-t图象是倾斜直线则表示其作匀速直线运动。
(2)s-t图象中斜率(倾斜程度)大小表示物体运动快慢,斜率(倾斜程度)越大,速度越快。
(3)s-t图象中直线倾斜方式(方向)不同,意味着两直线运动方向相反。
(4)s-t图象中,两物体图象在某时刻相交表示在该时刻相遇。
(5)s-t图象若平行于t轴,则表示物体静止。
(6)s-t图象并不是物体的运动轨迹,二者不能混为一谈。
(7)s-t图只能描述直线运动。
表达式:v =(vt+vo)/2、x=v·t、vt=v0+at、x = v0 + at2/2
常见考点考法
一辆汽车从静止开始加速,加速度a=5m/s2,问:10s后汽车走过的位移为多少?(汽车沿直线运动)
解:因为物体做的是匀加速直线运动,所以:
x = v0t + at2/2 x=250m
直线运动高中物理知识点2一、直线运动
1、质点:用来代替物体的有质量的点。
2、说明:(1)质点是一个理想化模型,实际上并不存在。
(2)物体可以简化成质点的情况:①物体各部分的运动情况都相同时(如平动)。②物体的大小和形状对所研究问题的影响可以忽略不计的情况下(如研究地球的公转)。
二、参考系和坐标系
1、参考系:在描述一个物体的运动时,用来作为标准的另外的物体。
说明:(1)同一个物体,如果以不同的物体为参考系,观察结果可能不同。
(2)参考系的选取是任意的,原则是以使研究物体的运动情况简单为原则;一般情况下如无说明,则以地面或相对地面静止的物体为参考系。
2、坐标系:为定量研究质点的位置及变化,在参考系上建立坐标系,如质点沿直线运动,以该直线为x轴;研究平面上的运动可建立直角坐标系。
三、时刻和时间
1、时刻:指的是某一瞬间,在时间轴上用—个确定的点表示。如“3s末”;和“4s初”。
2、时间:是两个时刻间的一段间隔,在时间轴上用一段线段表示。
四、位置、位移和路程
1、位置:质点所在空间对应的点。建立坐标系后用坐标来描述。
2、位移:描述质点位置改变的物理量,是矢量,方向由初位置指向末位置,大小是从初位置到末位置的线段的长度。
3、路程:物体运动轨迹的长度,是标量。
五、速度与速率
1、速度:位移与发生这个位移所用时间的比值(v= ),是矢量,方向与Δx的方向相同。
2、瞬时速度与瞬时速率:瞬时速度指物体在某一时刻(或某一位置)的速度,方向沿轨迹的切线方向,其大小叫瞬时速率,前者是矢量,后者是标量。
3、平均速度与平均速率:在变速直线运动中,物体在某段时间的位移跟发生这段位移所用时间的比值叫平均速度(v= ),是矢量,方向与位移方向相同;而物体在某段时间内运动的路程与所用时间的比值叫平均速率,是标量。
说明:速度都是矢量,速率都是标量;速度描述物体运动的快慢及方向,而速率只能描述物体运动的快慢;瞬时速率就是瞬时速度的大小,但平均速率不一定等于平均速度的大小,只有在单方向直线运动中,平均速率才等于平均速度的大小,即位移大小等于路程时才相等。
六、加速度
1、物理意义:描述速度改变快慢及方向的物理量,是矢量。
2、定义:速度的改变量跟发生这一改变所用时间的比值。
3、大小:等于单位时间内速度的改变量。
4、方向:与速度改变量的方向相同。
5、理解:要注意区别速度(v)、速度的改变(Δv)、速度的变化率( )。加速度的大小即,而加速度的方向即Δv的方向
七。速度、速度变化量及加速度有哪些区别?
速度等于位移跟时间的`比值。它是位移对时间的变化率,描述物体运动的快慢和运动方向。也可以说是描述物体位置变化的快慢和位置变化的方向。
速度的变化量是描述速度改变多少的,它等于物体的末速度和初速度的矢量差。它表示速度变化的大小和变化的方向,在匀加速直线运动中,速度变化的方向与初速度的方向相同;在匀减速直线运动中,速度的变化的方向与速度的方向相反。速度的变化与速度大小无必然联系。
加速度是速度的变化与发生这一变化所用时间的比值。也就是速度对时间的变化率,在数值上等于单位时间内速度的变化。它描述的是速度变化的快慢和变化的方向。加速度的大小由速度变化的大小和发生这一变化所用时间的多少共同决定,与速度本身的大小以及速度变化的大小无必然联系。
直线运动高中物理知识点3匀变速直线运动重要知识点讲解
基本概念:物体在一条直线上运动,如果在相等的时间内速度的变化相等,这种运动就叫做匀变速直线运动。
也可定义为:沿着一条直线,且加速度不变的运动,叫做匀变速直线运动。沿着一条直线,且加速度方向与速度方向平行的运动,叫做匀变速直线运动。
如果物体的速度随着时间均匀减小,这个运动叫做匀减速直线运动。如果物体的速度随着时间均匀增加,这个运动叫做匀加速直线运动。
●最核心公式
末速度与时间关系:Vt=Vo+at
位移与时间关系:x=Vot+at^2/2
速度与位移关系:Vt^2-Vo^2=2as
●重要公式补充
(1)平均速度V=s/t;
(2)中间时刻速度V(t)=(Vt+Vo)/2=x/t;
(3)中间位置速度V(s)=[(Vo^2+Vt^2)/2]1/2;
(4)公式推论Δs=aT^2;备注:式子中Δs为连续相邻相等时间(T)内位移之差,这个公式也是打点计时器求加速度实验的原理方程。
●物体作匀变速直线运动须同时符合下述两条:
⑴受恒外力作用
⑵合外力与初速度在同一直线上。
●重要比例关系
由Vt=at,得Vt∝t。
由s=(at^2)/2,得s∝t^2,或t∝2√s。
由Vt^2=2as,得s∝Vt^2,或Vt∝√s。
今天的内容就介绍到这里了。
直线运动高中物理知识点4物体在一条直线上运动,如果在相等的时间内速度的变化相等,这种运动就叫做匀变速直线运动。也可定义为:沿着一条直线,且加速度不变的运动,叫做匀变速直线运动。
概念及公式
沿着一条直线,且加速度方向与速度方向平行的运动,叫做匀变速直线运动。如果物体的速度随着时间均匀减小,这个运动叫做匀减速直线运动。如果物体的速度随着时间均匀增加,这个运动叫做匀加速直线运动。
s(t)=1/2·at^2+v(0)t=v(t)^2-v(0)^2/(2a)={v(t)+v(0)/2}*t
v(t)=v(0)+at
其中a为加速度,v(0)为初速度,v(t)为t秒时的速度 s(t)为t秒时的位移 速度公式:v=v0+at
位移公式:x=v0t+1/2at²;
位移---速度公式:2ax=v2;-v02;
条件:物体作匀变速直线运动须同时符合下述两条:
⑴受恒外力作用 ⑵合外力与初速度在同一直线上。
规律
瞬时速度与时间的关系:V1=V0+at
位移与时间的关系:s=V0t+1/2·at^2
瞬时速度与加速度、位移的关系:V^2-V0^2=2as
位移公式 X=Vot+1/2·at ^2=Vo·t(匀速直线运动)
位移公式推导:
⑴由于匀变速直线运动的速度是均匀变化的,故平均速度=(初速度+末速度)/2=中间时刻的瞬时速度
而匀变速直线运动的路程s=平均速度*时间,故s=[(v0+v)/2]·t
利用速度公式v=v0+at,得s=[(v0+v0+at)/2]·t=[v0+at/2]·t=v0·t+1/2·at^2
⑵利用微积分的基本定义可知,速度函数(关于时间)是位移函数的导数,而加速度函数是关于速度函数的导数,写成式子就是ds/dt=v,dv/dt=a,d2s/dt2=a
于是v=∫adt=at+v0,v0就是初速度,可以是任意的常数
进而有s=∫vdt=∫(at+v0)dt=1/2at^2+v0·t+C,(对于匀变速直线运动),显然t=0时,s=0,故这个任意常数C=0,于是有
s=1/2·at^2+v0·t
这就是位移公式。
推论 V^2-Vo^2=2ax
平均速度=(初速度+末速度)/2=中间时刻的瞬时速度
△X=aT^2(△X代表相邻相等时间段内位移差,T代表相邻相等时间段的时间长度)
X为位移。
V为末速度
Vo为初速度
初速度为零的匀变速直线运动的比例关系
⑴重要比例关系
由Vt=at,得Vt∝t。
由s=(at^2)/2,得s∝t^2,或t∝2√s。
由Vt^2=2as,得s∝Vt^2,或Vt∝√s。
⑵基本比例
①第1秒末、第2秒末、……、第n秒末的速度之比
V1:V2:V3……:Vn=1:2:3:……:n。
推导:aT1 : aT2 : aT3 : ..... : aTn
②前1秒内、前2秒内、……、前n秒内的位移之比
s1:s2:s3:……sn=1:4:9……:n^2。
推导:1/2·a(T1)^2: 1/2·a(T2)^2: 1/2·a(T3)^2: ...... : 1/2·a(Tn)^2
③第1个t内、第2个t内、……、第n个t内(相同时间内)的位移之比
xⅠ:xⅡ:xⅢ……:xn=1:3:5:……:(2n-1)。
推导:1/2·a(t)^2:1/2·a(2t)^2-1/2·a(t)^2:1/2·a(3t)^2-1/2·a(2t)^2
④通过前1s、前2s、前3s……、前ns的位移所需时间之比
t1:t2:……:tn=1:√2:√3……:√n。
推导:由s=1/2a(t)^2t1=√2s/at2=√4s/at3=√6s/a
⑤通过第1个s、第2个s、第3个s、……、第n个s(通过连续相等的位移)所需时间之比
tⅠ:tⅡ:tⅢ……tN=1:(√2-1):(√3-√2)……:(√n-√n-1)
推导:t1=√(2s/a)t2=√(2×2s/a)-√(2s/a)=√(2s/a)×(√2-1)t3=√(2×3s/a)-√(2×2s/a)=√(2s/a)×(√3-√2)…… 注⑵2=4⑶2=9
分类
在匀变速直线运动中,如果物体的速度随着时间均匀增加,这个运动叫做匀加速直线运动;如果物体的速度随着时间均匀减小,这个运动叫做匀减速直线运动。
若速度方向与加速度方向同向(即同号),则是加速运动;若速度方向与加速度方向相反(即异号),则是减速运动
速度无变化(a=0时),若初速度等于瞬时速度,且速度不改变,不增加也不减少,则运动状态为,匀速直线运动;若速度为0,则运动状态为静止。