
网上有关“向量的三角形法则是什么?”话题很是火热,小编也是针对向量的三角形法则是什么?寻找了一些与之相关的一些信息进行分析,如果能碰巧解决你现在面临的问题,希望能够帮助到您。
三角形定则是指两个力(或者其他任何矢量)合成,其合力应当为将一个力的起始点移动到另一个力的终止点,合力为从第一个的起点到第二个的终点。三角形定则是平行四边形定则的简化。有时为了方便也可以只画出一半的平行四边形,也就是力的三角形法则。
平行四边形法则:它是一种共点力的合成法则.这一法则通常表述为:以表示两个共点力的有向线段为邻边作一平行四边形,该两邻边之间的对角线即表示这两个力的合力,这个合力的大小由该对角线的长度表示,方向是由作用点指向另一端。
三角形的垂心定理:在三角形ABC中,求证:它的三条高交于一点。
证明:如图:作BE⊥AC于点E,CF⊥AB于点F,且BE交CF于点H,连接AH并延长交BC于点D.现在我们只要证明AD⊥BC即可。
因为CF⊥AB,BE所以 四边形BFEC为圆内接四边形.四边形AFHE为圆内接四边形。
以∠FAH=∠FEH=∠FEB=∠FCB由∠FAH=∠FCB得四边形AFDC为圆内接四边形所以∠AFC=∠ADC=90°即AD⊥BC。
先理解一下两个方法的原理:
第一:平行四边形法则是将两向量的起点重合,然后沿各自的末端做平行于另一向量的向量,然后连接两个相交的起点与两个相交的末端;而三角形法则是将第一个向量的末端与第二个向量的起点相连,然后连接第一个向量的起点与第二个向量的末端.
第二:清楚这两个原理之后再来分析这个题目,两个平行的向量如果起点相交以后,就无法以各自的末端引出相对平行于另一个向量的平行向量,多以只能用三角形的法则来做,将第一个向量的末端与第二个向量的起点相连,然后呢,再连接第一个向量的起点和第二个向量的末端,连接起来就是两向量相加后的结果.仔细想想,是不是这回事呢
关于“向量的三角形法则是什么?”这个话题的介绍,今天小编就给大家分享完了,如果对你有所帮助请保持对本站的关注!