
古希腊三大几何问题既引人入胜,又十分困难。问题的妙处在于它们看非常简单,而实际上却有着深刻的内涵。它们都要求作图只能使用圆规和无刻度的直尺,而且只能有限次地使用直尺和圆规。但直尺和圆规所能作的基本图形只有:过两点画一条直线、作圆、作两条直线的交点、作两圆的交点、作一条直线与一个圆的交点。某个图形是可作的就是指从若干点出发,可以通过有限个上述基本图形复合得到。经过2000多年的艰苦探索,数学家们终于弄清楚了这3个难题是“不可能用尺规完成的作图题”。认识到有些事情确实是不可能的,这是数学思想的一大飞跃。
基本介绍 中文名 :古希腊三大几何问题 外文名 :Three impossible ruler-and-compass constructions from ancient Greek mathematicians 学科 :平面几何 内容 :立方倍积、化圆为方、三等分角 问题引入,具体内容,立方倍积,化圆为方,三等分角,结果意义, 问题引入 传说大约在公元前400年,古希腊的雅典流行疫病,为了消除灾难,人们向太阳神阿波罗求助,阿波罗提出要求,说必须将他神殿前的立方体祭坛的体积扩大1倍,否则疫病会继续流行。人们百思不得其解,不得不求教于当时最伟大的学者柏拉图,柏拉图也感到无能为力。这就是古希腊三大几何问题之一的倍立方体问题。用数学语言表达就是:已知一个立方体,求作一个立方体,使它的体积是已知立方体的两倍。另外两个著名问题是三等分任意角和化圆为方问题。 然而,一旦改变了作图的条件,问题则就会变成另外的样子。比如直尺上如果有了刻度,则倍立方体和三等分任意角就都是可作的了。数学家们在这些问题上又演绎出很多故事。中国数学家和一位有志气的中学生,先后解决了美国著名几何学家佩多提出的关于“生锈圆规”(即半径固定的圆规)的两个作图问题,为尺规作图添了精彩的一笔。 或描述如下: 这是三个作图题,只使用圆规和直尺求出下列问题的解,直到十九世纪被证实这是不可能的: 1.立方倍积 即求作一立方体的边,使该立方体的体积为给定立方体的两倍。 2.化圆为方 即作一正方形,使其与一给定的圆面积相等。 3.三等分角 即分一个给定的任意角为三个相等的部分。 具体内容 立方倍积 关于立方倍积的问题有一个神话流传:当年希腊提洛斯(Delos)岛上瘟疫流行,居民恐惧也向岛上的守护神阿波罗(Apollo)祈祷,神庙里的预言修女告诉他们神的指示:“把神殿前的正立方形祭坛加到二倍,瘟疫就可以停止。”由此可见这神是很喜欢数学的。居民得到了这个指示后非常高兴,立刻动工做了一个新祭坛,使每一棱的长度都是旧祭坛棱长的二倍,但是瘟疫不但没停止,反而更形猖獗,使他们都又惊奇又惧怕。结果被一个学者指出了错误:「棱二倍起来体积就成了八倍,神所要的是二倍而不是八倍。」大家都觉得这个说法很对,于是改在神前并摆了与旧祭坛同形状同大小的两个祭坛,可是瘟疫仍不见消灭。人们困扰地再去问神,这次神回答说:「你们所做的祭坛体积确是原来的二倍,但形状却并不是正方体了,我所希望的是体积二倍,而形状仍是正方体。」居民们恍然大悟,就去找当时大学者柏拉图(Plato)请教。由柏拉图和他的弟子们热心研究,但不曾得到解决,并且耗费了后代许多数学家们的脑汁。而由于这一个传说,立方倍积问题也就被称为提洛斯问题。 化圆为方 方圆的问题与提洛斯问题是同时代的,由希腊人开始研究。有名的阿基米徳把这问题化成下述的形式:已知一圆的半径是r,圆周就是2πr,面积是πr 2 。由此若能作一个直角三角形,其夹直角的两边长分别为已知圆的周长2πr及半径r,则这三角形的面积就是 (1/2)(2πr)(r)=πr2 与已知圆的面积相等。由这个直角三角形不难作出同面积的正方形来。但是如何作这直角三角形的边。即如何作一线段使其长等于一已知圆的周长,这问题阿基米德可就解不出了。 三等分角 三等分任意角的题也许比那两个问题出现更早,早到历史上找不出有关的记载来。但无疑地它的出现是很自然的,纪元前五、六百年间希腊的数学家们就已经想到了二等分任意角的方法,正像我们在几何课本或几何画中所学的:以已知角的顶点为圆心,用适当的半径作弧交角两的两边得两个交点,再分别以这两点为圆心,用一个适当的长作半径画弧,这两弧的交点与角顶相连就把已知角分为二等分。二等分一个已知角既是这么容易,很自然地会把问题略变一下:三等分怎么样呢?这样,这一个问题就这么非常自然地出现了。 结果意义 化圆为方,立方倍积和三等分角这三大古希腊几何作图难题的结果又是如何被证明的呢?带着问题让我们来探究一下。 (1)化圆为方问题的结果 我们都知道化圆为方是由古希腊著名学者阿纳克萨戈勒斯提出的,但是阿纳克萨戈勒斯一生也未能解决自己提出的问题。 实际上,这个化圆为方问题中的正方形的边长是圆面积的算术平方根。我们假设圆的半径为单位1,那么正方形的边长就是根号π。 直到1882年,化圆为方的问题才最终有了合理的答案。德国数学家林德曼(Lindemann,1852~1939)在这一年成功地证明了圆周率π=3.1415926......是超越数,并且尺规作图是不可能作出超越数来,所以用尺规作图的方式解决化圆为方的问题才被证明是不可能实现的。 德国数学家林德曼 (2)倍立方积和三等分角问题的结果 直到1830年,18岁的法国数学家伽罗华首创了后来被命名为“伽罗华理论”,该理论能够证明倍立方积和三等分角问题都是尺规作图不能做到的问题。1837年,法国数学家汪策尔(Wantzel,1814~1848)终于给出三等分角和倍立方积的问题都是尺规作图不可能问题的证明。 (3)三大几何作图难题的意义 虽然三大几何作图难题都被证明是不可能由尺规作图的方式做到的,但是为了解决这些问题,数学家们进行了前赴后继的探索,最后得到了不少新的成果,发现了许多新的方法。同时,它反映了数学作为一门科学,它是一片浩瀚深邃的海洋,仍有许多未知的谜底等待这我们去发现。今天我们来和大家说说世界七大数学难题,这些可都是世界上最难的数学题哦。 说到数学难题你会想到什么,我最先想到的是哥德巴赫猜想,但其实哥德巴赫猜想并不是这七大数学难题之一,下面就让我们来一起看看当今科技如此发达的情况下还有哪些数学难题。
世界七大数学难题:
1、P/NP问题(P versus NP)
2、霍奇猜想(The Hodge Conjecture)
3、庞加莱猜想(The Poincaré Conjecture),此猜想已获得证实。
4、黎曼猜想(The Riemann Hypothesis)
5、杨-米尔斯存在性与质量间隙(Yang-Mills Existence and Mass Gap)
6、纳维-斯托克斯存在性与光滑性(Navier-Stokes existence and smoothness)
7、贝赫和斯维讷通-戴尔猜想(The Birch and Swinnerton-Dyer Conjecture)
所谓的世界七大数学难题其实是于2000年5月24日由由美国克雷数学研究所公布的七个数学难题。也被称为千禧年大奖难题。根据克雷数学研究所订定的规则,所有难题的解答必须发表在数学期刊上,并经过各方验证,只要通过两年验证期,每解破一题的解答者,会颁发奖金100万美元。这些难题是呼应1900年德国数学家大卫·希尔伯特在巴黎提出的23个历史性数学难题,经过一百年,许多难题已获得解答。而千禧年大奖难题的破解,极有可能为密码学以及航天、通讯等领域带来突破性进展。
一:P/NP问题
P/NP问题是世界上最难的数学题之一。在理论信息学中计算复杂度理论领域里至今没有解决的问题,它也是克雷数学研究所七个千禧年大奖难题之一。P/NP问题中包含了复杂度类P与NP的关系。1971年史提芬·古克和Leonid Levin相对独立的提出了下面的问题,即是否两个复杂度类P和NP是恒等的(P=NP?)。 复杂度类P即为所有可以由一个确定型图灵机在多项式表达的时间内解决的问题;类NP由所有可以在多项式时间内验证解是否正确的决定问题组成,或者等效的说,那些解可以在非确定型图灵机上在多项式时间内找出的问题的集合。很可能,计算理论最大的未解决问题就是关于这两类的关系的: P和NP相等吗? 在2002年对于100研究者的调查,61人相信答案是否定的,9个相信答案是肯定的,22个不确定,而8个相信该问题可能和现在所接受的公理独立,所以不可能证明或证否。对于正确的解答,有一个1百万美元的奖励。 NP-完全问题(或者叫NPC)的集合在这个讨论中有重大作用,它们可以大致的被描述为那些在NP中最不像在P中的(确切定义细节请参看NP-完全理论)。计算机科学家现在相信P, NP,和NPC类之间的关系如图中所示,其中P和NPC类不交。
假设P ≠ NP的复杂度类的图解。如P = NP则三个类相同。 简单来说,P = NP问题问道:如果是/不是问题的正面答案可以很快验证,其答案是否也可以很快计算?这里有一个给你找点这个问题的感觉的例子。给定一个大数Y,我们可以问Y是否是复合数。例如,我们可能问53308290611是否有非平凡的因数。答案是肯定的,虽然手工找出一个因数很麻烦。从另一个方面讲,如果有人声称答案是"对,因为224737可以整除53308290611",则我们可以很快用一个除法来验证。验证一个数是除数比找出一个明显除数来简单得多。用于验证一个正面答案所需的信息也称为证明。所以我们的结论是,给定正确的证明,问题的正面答案可以很快地(也就是,在多项式时间内)验证,而这就是这个问题属于NP的原因。虽然这个特定的问题,最近被证明为也在P类中(参看下面的关于"质数在P中"的参考),这一点也不明显,而且有很多类似的问题相信不属于类P。 像上面这样,把问题限制到“是/不是”问题并没有改变原问题(即没有降低难度);即使我们允许更复杂的答案,最后的问题(是否FP = FNP)是等价的。
关于证明的难度的结果
虽然百万美元的奖金和投入巨大却没有实质性结果的大量研究足以显示该问题是困难的,但是还有一些形式化的结果证明为什么该问题可能很难解决。 最常被引用的结果之一是设计神谕。假想你有一个魔法机器可以解决单个问题,例如判定一个给定的数是否为质数,可以瞬间解决这个问题。我们的新问题是,若我们被允许任意利用这个机器,是否存在我们可以在多项式时间内验证但无法在多项式时间内解决的问题?结果是,依赖于机器能解决的问题,P = NP和P ≠ NP二者都可以证明。这个结论带来的后果是,任何可以通过修改神谕来证明该机器的存在性的结果不能解决问题。不幸的是,几乎所有经典的方法和大部分已知的方法可以这样修改(我们称它们在相对化)。 如果这还不算太糟的话,1993年Razborov和Rudich证明的一个结果表明,给定一个特定的可信的假设,在某种意义下“自然”的证明不能解决P = NP问题。这表明一些现在似乎最有希望的方法不太可能成功。随着更多这类定理得到证明,该定理的可能证明方法有越来越多的陷阱要规避。 这实际上也是为什么NP完全问题有用的原因:若对于NP完全问题存在有一个多项式时间算法,或者没有一个这样的算法,这将能用一种相信不被上述结果排除在外的方法来解决P = NP问题